Ampliação - Razão de semelhança

GeoGebra Planilha dinâmica

Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Prof. Joelson Lima, Criado com GeoGebra

Teorema de Pitágoras

Teorema de Pitágoras - GeoGebra Planilha dinâmica

Teorema de Pitágoras

Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Prof. Joelson Lima, Criado com GeoGebra

Demonstração geométrica 01 do teorema de Pitágoras - GeoGebra Planilha dinâmica

Demonstração geométrica 01 do teorema de Pitágoras

Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Prof. Joelson Lima, Criado com GeoGebra

Demostração geométrica 02 do teorema de Pitágoras - GeoGebra Planilha dinâmica

Demostração geométrica do teorema de Pitágoras

Sorry, the GeoGebra Applet could not be started. Please make sure that Java 1.4.2 (or later) is installed and active in your browser (Click here to install Java now)

Prof. Joelson Lima, Criado com GeoGebra

sexta-feira, 5 de março de 2010

Operações com frações

Adição e Subtração de Frações 

Para adicionar ou subtrair frações de mesmo denominador, somam-se os numeradores e repete-se o denominador.

Temos que analisar dois casos:

1º) denominadores iguais

Para somar frações com denominadores iguais, basta somar os numeradores e conservar o denominador.
Para subtrair frações com denominadores iguais, basta subtrair os numeradores e conservar o denominador.

Observe os exemplos:



2º) denominadores diferentes

Para somar frações com denominadores diferentes, uma solução é obter frações equivalentes, de denominadores iguais ao mmc dos denominadores das frações.


Exemplo: somar as frações 

Obtendo o mmc dos denominadores temos mmc (5,2) = 10.


(10:5). 4 = 8  


(10:2).5 = 25




     

Resumindo: utilizamos o mmc para obter as frações equivalentes e depois somamos normalmente as frações, que já terão o mesmo denominador, ou seja, utilizamos o caso 1.     

Multiplicação e divisão de números fracionários 

Nas multiplicações de frações multiplica-se o numerador com numerador e denominador com denominador. Se necessário, simplifique o produto.

Veja os exemplos:

 







Na divisão de números fracionários, devemos multiplicar a primeira fração pelo inverso da segunda. Se necessário simplifique.

Veja o exemplo abaixo:









fonte: http://www.colegioweb.com.br/matematica-infantil/operacoes-com-fracoes

2 comentários:

Anônimo disse...

Muito legal!Me ajudou bastante!

não enteressa disse...

não tem nada a ver com o que eu quero,
vocês deveriam ter vergonha do conteúdo que vocês colocam no site,tirei 0,5 (cinco decimoa) na prova seguindo vocês

Postar um comentário